CASA-DFW Urban Demonstration Network

- Background
- CASA Priorities
- Radar Network & Products
- Service/Mission benefits
- Highlighted projects in progress

Tim McClung NWS-STI Chief Operating Officer tim.mcclung@noaa.gov

CASA Engineering Research Center: (2003 - 2013)

- 10-year NSF-funded program
- UMass, CSU, OU, UC-Colorado Springs
- Industry & Government Partners
- Testbeds in OK, Puerto Rico, and now North Central Texas
- CASA transitioning to sustaining, post-NSF Funding

CASA-DFW Priorities

- 1. Hi-res atmospheric mapping
- 2. Real-time neighborhood scale observation/forecast of hazards for users.
- 3. Integrate X-band radar network
- 4. Pilot federal/private/municipal partnership model for new observation technologies and research

A brief tornadic spin-up in Ft. Worth observed by the UTA radar. Data is displayed on a password protected website for local jurisdictions (EMs, fire, elected officials) that pay membership fees to support radar operations.

Urban Demo Plan Radar Network

CASA Radar Network

Local Engagment

Population	
0-999	\$500
1,000-4,999	\$1,000
5,000-14,999	\$2,000
15,000-29,999	\$3,000
30,000 - 49,999	\$5,000
50,000 - 79,999	\$7,500
80,000 - 119,999	\$10,000
120,000 - 169,999	\$15,000
170,000 - 249,999	\$20,000
250,000 - 399,999	\$25,000
400,000 - 749,000	\$30,000
750,000 – 1Million +	\$35,000
Counties	
Rural	\$3,000
Urban	\$10,000
Special Districts	\$15,000

Towns and cities pay for radar deployment and contribute to radar operations costs

Test Bed Integrated with local stakeholders and the public

Case Study Analysis of 2014 CASA cases

- Local NWS
- EmergencyManagers
- Media
- Spotters
- StormwaterManagement
- Industry

Radar products

Reflectivity

Rainfall Accumulation

KDP

Rainfall Rate

Science/Mission Benefits of the CASA Testbed

- ▶ A "Living Lab" for Severe Weather Warning and Warn-On-Forecast
- Semi-operational testing of a variety of new products obtained by fusing a combination of dissimilar sensors.
- Assessment of impact of probabilistic weather prediction of convective initiation and heavy precipitation.
- An assessment of performance impact as well as user-defined value through social science efforts.
- Demonstrate regionally-integrated decision support services.
- Increased lead time for severe weather and reduced false alarm rate.
- Increased lead time for urban flooding.

Project Highlights

- Integrated Warning System
 - Next-Gen Flash Flood/Tornado Warning System
 - QPE
 - High–Res FF Forecasting in Fort Worth
 - Motorist Behavior in Flash Floods
 - Hydrometeor Classification
- Network of Networks
 - Convective Initiation
 - Dual pol data fusion
 - Estimating Observational Value
 - Data Denial Experiments

Next Generation Warning System for Flash Floods and Tornadoes

QPE: Quantitative Precipitation Estimation

Operational CASA product

CASA QPE (20 Gauges. 5 min.)

Correlation; 75.63%

Normalized Bias: -1.11 Normalized Norm-Std

Err 33.49%

Hi-Res Flash Flood Forecasting: City of Fort Worth

Distributed Sacramento model is used to calculate surface runoff from CASA QPE

Convective Initiation

Top-down (a) and side view (b) of the revised dryline conceptual model. Note the preferred area of CI to the east of the primary dryline.

- Analyzed 4 dryline CI events
- Results have led to a new conceptual model for dryline convective initiation
- New diagnostic surface feature identified: mixing line

Dual Pol Data Fusion

QPE Algorithm

Hydrometeor classification

Lightning nowcast

Multi-Radar QPE

- Fuses radar data with different spatial and temporal and frequency characteristics
- Next Steps: Fused X-band, Sband QPE

Research: \$6 million + new grants awarded

NWS-OST (\$795k)

- Convective Initiation
- Dual Pol data fusion
- Geographically Specific Warnings
- Hydrological models (partial)
- Data denial
- AWIPS-II

Other Grants (\$5M +)

- Flash Flood Warning (Endto-End)
- MCC software for mechanical radars
- Phase Tilt Radar
- Targeted mobile device warnings delivered via next gen internet architecture
- High bandwith communications
- National Mesonet Program
- Hospital Warning Systems

Tim McClung NWS-STI Chief Operating Officer tim.mcclung@noaa.gov

(Left) High resolution tornado image captured by CASA radars on May 24, 2011 in Oklahoma. (Right) Sensor-based Multi-